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a  b  s  t  r  a  c  t

Explicit  equations  for  the  height  cS
1 and  retention  time  tR,1 of the  pure  first component  shock  in the  case

of  a narrow  rectangular  injection  pulse  of a binary  mixture  with  competitive  Langmuir  isotherms  were
derived  within  the frame  of  the  equilibrium  theory.  The  height  of the  first shock  is  obtained  as  an  only
positive  root  of a quartic  equation.  Hence,  it was  shown  that,  for binary  Langmuir  systems,  the  individual
concentration  profiles  at the column  outlet  can  be expressed  entirely  in closed-form.  In addition,  a  novel,
simple  parametric  representation  that  gives  the  trajectory  of  the  first  shock  in the  distance–time  diagram
as  a function  of  cS

1 was  derived.  The  practical  relevance  of  the  new  equations  was  demonstrated  by utilizing
them for  optimization  of  batch  chromatography.  It was  shown  that  cS

1 increases  and  tR,1 decreases  with
increasing  duration  of  injection  for given  feed  concentrations  when  the  pure  first  component  plateau  is
eroded  during  elution.  The  derivative  of the cycle  time  with  respect  to the duration  of  injection  is always

more  than  unity.  For  this  reason,  the  maximum  productivity  of more  retained  component  is  obtained
when  the duration  of injection  is  selected  so  that  the  purity  constraint  can  be  fulfilled  by having  100%
yield.  For  the  less  retained  component,  an  implicit  expression  for  the  maximum  productivity  was  derived.
When the  injected  loadings  are  constant,  tR,1 decreases  with  increasing  feed  concentrations  while  cS

1
and  the  cycle  time  are  independent  of them.  In addition,  the  productivities  of  both  components  always
increase  with  increasing  feed  concentrations.
. Introduction

Preparative chromatography is a highly developed technique
or many difficult separations in the pharmaceutical, fine chemi-
al and food industries. Within these applications, chromatography
s typically operated at overloaded conditions, for which nonlin-
ar competitive adsorption behavior is characteristic. Under these
onditions, the solute propagation in the column is essentially con-
rolled by the thermodynamics of phase equilibria, while kinetic
roperties have a secondary, albeit not negligible, effect on the
ystem dynamics [1].

For decades, different chromatographic systems have been
escribed by using so called equilibrium theory of chromatogra-
hy [1–9]. Within the frame of the theory, the propagation of the
oncentration states in the column are described by considering
onvection and phase equilibrium only, while mass transfer resis-
ance and axial dispersion are neglected. The theory provides an

nderstanding of the main features of the column dynamics, such
s formation and propagation of concentration shocks, dispersive
aves and their interactions for single, binary as well as multi-

∗ Corresponding author. Tel.: +358 5 62111; fax: +358 5 62199.
E-mail address: tuomo.sainio@lut.fi (T. Sainio).

021-9673/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.chroma.2011.07.004
© 2011 Elsevier B.V. All rights reserved.

component systems. It has been used widely for the analysis and
design of both single-column [10–13] and multi-column chromato-
graphic processes [14,15].

The equilibrium model consists of hyperbolic first-order partial
differential equations. In the case of classical competitive Langmuir
isotherms and piecewise constant boundary condition, the solution
of the model equations can be given mostly in explicit form, also
in the case of multi-component systems. First comprehensive anal-
yses of the problem have been presented already in the 1940s by
Devault [2] and by Glueckauf [3].  They both discussed the math-
ematical theory of the two-component problem and showed, for
example, the existence of two  discontinuities, one in front of each
band. Later, Helfferich and Klein [1] and Rhee et al. [4] calculated the
composition trajectories in the distance–time plane by exploiting
two different approaches: so-called h-transform and the method of
characteristics, respectively. Based on these approaches, Golshan-
Shirazi and Guiochon [5,6] have presented an exact, analytical
solution for almost the entire chromatographic cycle at column
outlet in the case of a binary Langmuir system. However, in the
case of small injection, they have been unable to derive a closed-

form solution for the height of the pure first component shock cS

1
and for the retention time of the shock tR,1. Recently, Rajendran and
Mazzotti [9] have presented the trajectory of the first shock in the
distance–time diagram in parametric form by using ω-transform,

dx.doi.org/10.1016/j.chroma.2011.07.004
http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
mailto:tuomo.sainio@lut.fi
dx.doi.org/10.1016/j.chroma.2011.07.004
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Fig. 1. Individual elution profiles of a rectangular injection pulse at the column
outlet. (a) Incomplete separation. Conditions: cF = cF = 10 g/L; qm,1 = qm,2 = 100 g/L;

solution are a concentration shock in the front of both bands, a
380 J. Siitonen, T. Sainio / J. Chro

ut they have not discussed the solution at the column outlet.
losed-form equations for the height and position of the first shock
ave not been reported.

Lack of explicit equations for cS
1 and tR,1 significantly complicates

he analysis and design of chromatographic systems, especially the
valuation of the key performance parameters such as productivity
nd eluent consumption [10–13].  This is because the most useful
efinition of the cycle time allows “stacked injections” where the
ront of each injection profile touches (but does not overlap with)
he tail of the preceding one. In absence of the complete closed-
orm solution of the chromatogram, the cycle time has even been
efined excessively large in some optimization studies [10,11],
hich limits the practical relevance of the results. In addition, equa-

ions for the retention times of the shock fronts are needed to
stimate adsorption isotherm parameters in a recently introduced
xperimental method [16].

The main objective of the present work is to derive a closed-form
xpression for the height and retention time of the pure first com-
onent shock in the case of a narrow rectangular injection pulse of a
inary mixture with competitive Langmuir isotherm. The approach

s based on the equilibrium theory of chromatography and it can
e considered as a complement to the work of Golshan-Shirazi and
uiochon [5].

At the beginning of this contribution, the fundamentals of the
quilibrium theory will be summarized. After that, analytic solu-
ions for cS

1 and tR,1 are derived. It will be shown that, for binary
angmuir systems, the individual concentration profiles at col-
mn  outlet can be expressed entirely in closed-form. The obtained
esults are applied to derive a simple parametric representation for
he trajectory of the first shock in the distance–time diagram. The
ocation of the first shock in physical plane is given as a function
f cS

1. Finally, the practical relevance of the novel equations will be
emonstrated by deriving differentials of cS

1 and tR,1 with respect to
ypical operating parameters that can be varied in practical applica-
ions and by using them for optimization of batch chromatography.

. Background

Within the frame of the equilibrium theory, the mass balance
or an individual component i is written as

∂

∂t
(ci + Fqi) + u

∂ci

∂x
= 0 (i = 1, 2) (1)

here ci and qi are the mobile and the stationary phase concen-
rations of solute i, F is the phase ratio, t is time, x is the space
oordinate, and u is the interstitial velocity. For binary systems that
ollow the competitive Langmuir adsorption isotherm model the
quilibrium relationship is given by

i = qm,ibici

1 + b1c1 + b2c2
(i = 1, 2) (2)

here qm,i and bi are the saturation capacity of the stationary phase
nd the Langmuir parameter of solute i, respectively. In the follow-
ng discussion, it is assumed that component 1 is the less strongly
dsorbed one. This means that a2 > a1, where ai = biqm,i is the Henry
onstant of component i.

Eqs. (1) and (2) form a coupled system of two first-order partial
ifferential equations. The system can be solved by the method of
haracteristics when Riemann boundary conditions are used. Typ-
cally, the task is to describe the solute propagation in the column

hen a rectangular pulse of binary mixture with known duration,
tinj, is first injected to an initially clean column and then eluted.
n this case, the initial and boundary conditions of Eq. (1) are

i(x, t = 0) = 0 for 0 ≤ x ≤ L (3)

i(x = 0, t) = cF
i for 0 ≤ t ≤ �tinj (4)
1 2
b1 = 0.02 L/g; b2 = 0.025 L/g; F = 1/3; Vinj = 0.1 bed volumes. (b) Complete separation.
Same conditions as for (a) except Vinj = 0.03 bed volumes.

ci(x = 0, t) = 0 for t > �tinj (5)

where L is the column length and cF
i

is the concentration of com-
ponent i in feed.

If the injection is wide enough, the pure component 1 plateau
in the front of the elution profile is not eroded during elution,
and the individual concentration profiles at the column outlet can
expressed entirely in closed form [5].  However, for sufficiently
small injections, the plateau erodes completely, and the height of
the front shock decreases while it propagates through the column.
For such a case, no closed-form expression has been presented for
the height or retention time of the first pure component shock. The
distance from the column inlet, where the pure first component
plateau is eroded completely, is given by

xE = u(1 + b1cA
1 )

2
�tinj

Fa1b1cA
1

[
1 − ˇb2cF

2

˛(  ̌ + b1cA
1 )

2

]
(6)

where  ̨ = a2/a1 is the separation factor,  ̌ = 1 − 1/  ̨ is an auxiliary
parameter, cA

1 = cF
1[1 + b2/(˛b1�+)] is the height of the first shock

before erosion, and �+ is the slope of � + characteristic correspond-
ing the feed composition whose value can be calculated explicitly
from adsorption isotherm parameters [8].

Typical elution profiles in the case of a narrow injection pulse
are illustrated in Fig. 1. Depending on the resolution between
the bands there are two possibilities. Fig. 1a represents the case
where the components are not separated completely. The concen-
tration profiles at column outlet consist of three zones. A zone of
pure first component elutes between times tR,1 and tR,2, a mixed
zone between tR,2 and tE,1, and a zone of pure second component
between tE,1 and tE,2. In the case of complete separation, illustrated
in Fig. 1b, there is no mixed zone left. The main features of the
pure diffuse boundary for both components and a possible second
component concentration plateau.

If the components are not separated completely (Fig. 1a), the
retention time of the second shock tR,2 and the end of elution profile
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f the first component tE,1 are given by [5]

R,2 = �tinj + t0

[
1 + Fa2�

(
1 −
√

L′
f

)2
]

(7)

E,1 = �tinj + t0

(
1 + �Fa1

˛

)
(8)

n the above equations, t0 is the elution time of a non-retained
omponent, Lf,2 = (b2cF

2�tinj)/(Fa2t0) is the loading factor of the
econd component, and L′

f
= (1 + �+b1/b2)Lf,2 and � = (˛b1�+ +

2)/(b1�+ + b2) are auxiliary parameters.
The concentration profile of the first component in mixed zone

between tR,2 and tE,1) is given by

1 = 1
b1 + b2/(˛�+)

[√
�

˛

t0Fa1

t − �tinj − t0
− 1

]
(9)

nd in the pure first component zone (between tR,1 and tR,2) by

 = �tinj + t0 + t0Fa1

[
1

(1 + b1c1)2
− Lf,2

ˇ

(  ̌ + b1c1)2

]
(10)

t should be noted that the latter equation gives elution time as
 function of c1, while there is no closed-form solution giving the
elationship the other way around. This is the very reason that has
omplicated the derivation of a complete analytic solution for the
deal model of chromatography. The first component concentration
t the rear of the second shock cM

1 (see Fig. 1a) is obtained from Eq.
9) by setting t = tR,2

M
1 = ˛�+

b2 + ˛b1�+

√
L′

f
− ˇ

1 −√L′
f

(11)

nd at the front of the second shock cA′
1 from Eq. (10)

A′
1 =

√
L′

f
− ˇ

b1

(
1 −√L′

f

) (12)

or the retention time of the first shock tR,1, there has not been
 closed-form solution so far. For solving this problem Golshan-
hirazi and Guiochon [5] have provided a numerical approach.
lternatively, tR,1 can be solved from the parametric representation
iven by Rajendran and Mazzotti [9].

In the case of complete separation (Fig. 1b), the mixed zone has
isappeared and the rear diffuse profile of the first component can
e calculated entirely by Eq. (10). The end time of the profile is given
y

E,1 = �tinj + t0 + t0Fa1

(
1 − Lf,2

ˇ

)
(13)

s in the case of incomplete separation, there has been no method
or solving the height or the retention time of the front shock in
losed-form, but the above mentioned numerical approaches can
e applied.

. Closed-form equations for the height and retention time
f the first shock

A closed-form solution for the height and retention time of the
rst component shock is derived as follows. As in the numerical
ethod by Golshan-Shirazi and Guiochon [5],  the idea is to utilize
ass balance of the first component to calculate first cS

1 and then

R,1.

Although the elution profile of the pure first component (Eq.
10)) cannot be presented in closed-form such that it gives c1 as a
unction of time, the mass of the first component eluted from the
r. A 1218 (2011) 6379– 6387 6381

column can be calculated as a function of cS
1. This is obtained by

integrating the elution profile piecewise with respect to c1 from 0
to cS

1 and by subtracting cS
1tR,1 from the value of the integral. The

calculation principle is presented in Fig. 2. The areas of hatched
regions A3–A5 correspond to the values of the integral terms, the
area of dark grey region A1 to the amount of component 1, and the
area of light grey region A2 to the difference between these values.

In the case of incomplete separation (Fig. 2a), the mass balance
can be written as

cF
1�tinj = A1 = A5 + A4 + A3 − A2 =

∫ cM
1

0

t dc1+
∫ cA′

1

cM
1

t dc1

+
∫ cS

1

cA′
1

t dc1 − cS
1tR,1 = t0Fa1

b1

(
b1cS

1

1 + b1cS
1

)2

−
{

˛b2cF
2

b1

[
b1cS

1

˛(1 + b1cS
1) − 1

]2
}

�tinj (14)

and in the case of complete separation (Fig. 2b) as

cF
1�tinj = A1 = A3 − A2 =

∫ cS
1

0

t dc1 − cS
1tR,1

= t0Fa1

b1

(
b1cS

1

1 + b1cS
1

)2

−
{

˛b2cF
2

b1

[
b1cS

1

˛(1 + b1cS
1) − 1

]2
}

�tinj (15)

It is interesting to note that both cases lead to exactly the same
result. By dividing the both sides of Eq. (14) or Eq. (15) by cF

1�tinj
and by simplifying the resulting equation, the following implicit
expression for cS

1 is obtained:

Lf,1

(
1 + 1

b1cS
1

)2

+ Lf,2

(
1 + 1

˛(1 + b1cS
1) − 1

)2

= 1 (16)

As seen in Eq. (16), the height of first component shock depends
only on the loading factors, the separation factor and the Lang-
muir parameter of the first component. The concentration cS

1 can
be solved by re-arranging the above equation to give

A(b1cS
1)

4 + B(b1cS
1)

3 + C(b1cS
1)

2 + Db1cS
1 + E = 0 (17)

where

A = Lf,1 + Lf,2 − 1 (18)

B = 2[Lf,1 + Lf,2 + ˇ(Lf,1 − 1)] (19)

C = Lf,1 + Lf,2 + ˇ[4Lf,1 + ˇ(Lf,1 − 1)] (20)

D = 2Lf,1ˇ(  ̌ + 1) (21)

E = Lf,1ˇ2 (22)

Eq. (17) is a quartic equation with respect to b1cS
1. It can

be solved analytically, for example by using Ferrari’s method
[17], Descartes–Euler method [18] or Neumark’s method [19]. In
Appendix A, it is shown that, when  ̨ > 1, Lf,1 > 0, and Lf,2 > 0, Eq. (17)
has only one positive real root. This root must give the height of the

first shock. Applicability of different algorithms for solving Eq. (17)
is discussed in the next section.

Once cS
1 is obtained, the retention time of the first shock can

be calculated from Eq. (10) by setting c1 = cS
1. An alternative form,
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ig. 2. Individual elution profiles of a rectangular injection pulse presented in th
ifference between the sum of integral terms A3–A5 and the total amount of compo

here tR,1 is expressed as a function of Lf,1, is obtained by combining
qs. (10) and (16)

R,1 = �tinj + t0 + t0Fa1

[
1

˛(1 + b1cS
1)

2
+ Lf,1

ˇ

(b1cS
1)

2

]
(23)

inally, it should be noted that closed-form equations for the height
nd retention time of the first shock can be obtained also by
sing another approach. Rajendran and Mazzotti [9] have recently
erived a parametric representation of the trajectory of the first
hock by using the ω-transform. Although not pursued by Rajen-
ran and Mazzotti, it is straightforward to show that their equations
lso lead to a quartic when solved for characteristic parameter ωS

1
hich corresponds to the shock height. Unfortunately, the solution

s more complex than the one presented here. A somewhat simpler
orm is obtained by substituting loading factors into the paramet-
ic representation of Rajendran and Mazzotti, but this will not be
iscussed here.

. Solution of the quartic equation

Several analytic algorithms have been published to solve quartic
quations [17–19].  However, as to the computational implemen-
ation, none of them is unconditionally stable with arbitrary
arameters. The methods have different properties with regard to
verflow and round-off errors. Physical constraints pose the fol-
owing limits for the coefficients of Eq. (17): −1 < A < 0, −2 < B < 2,
1 < C < 5, 0 < D < 4, 0 < E < 1. The question arises, which algorithm is
est suited for solving this quartic equation?

A Matlab code was developed to compare the following four
lgorithms: (1) Ferrari’s solution [17], (2) Descartes–Euler solution
18], (3) Neumark’s solution [19], and (4) the solution given by Mat-

ab’s Symbolic Math Toolbox. Ten million random combinations of
arameters Lf,1, Lf,2, and ˛, were examined with all algorithms. The
ccuracy of each solution was checked by substituting the obtained
ositive root cS∗

1 back into the left hand side of Eq. (16) and by
entration–time coordinate system. A1, the total amount of component 1. A2, the
1 A1. A3–A5, integral terms in Eqs. (14) and (15). Same conditions as in Fig. 1.

calculating the relative residual defined as

res =
∣∣∣∣1 − f (cS∗

1 )
1

∣∣∣∣ (24)

According to the simulations, the most applicable option for solv-
ing Eq. (17) is the Ferrari’s solution. With this algorithm, the
relative residual was  always less than 32 × 10−12. However, also
the Descartes–Euler solution and the Neumark’s solution were
observed to be relatively stable. The maximum relative residual
with the Descartes–Euler solution was 0.45 × 10−6 and with the
Neumark’s solution 0.24 × 10−3.

In contrast to the other methods, the Matlab’s symbolic solu-
tion was not completely stable. The maximum residual was  0.80,
and in 1413 cases out of ten million the relative residual was  more
than 1%. In addition, in 616 cases a root was  not obtained at all,
because the round-off errors led to an indeterminate form 0/0. For
example, with parameters Lf,1 = 0.028, Lf,2 = 0.067 and  ̨ = 1.4 the rel-
ative residual was 4.3% and with parameters Lf,1 = 0.031, Lf,2 = 0.243
and  ̨ = 2.0 no root was  obtained. In the former case, the retention
time of the first shock calculated by Eq. (10) was 0.85% too large,
when �tinj/t0 = 0.1 and Fa1 = 4.5. In addition, the Matlab solution
was about one hundred times slower than the other ones. This is
not a major factor, however, since the calculation time of one root
was always less than 5 ms  on a standard desktop computer.

The recommended Ferrari’s algorithm is given in Table 1. The
idea is to first solve one root of a particular cubic equation (I.1),
the coefficients of which are obtained from those of the original
quartic equation. This root is then used to factorize the quartic into
two quadratics that can be solved.

In Eqs. (I.4) and (I.5) √ and 3
√ stand for any determination of the

square or cubic root. However, it was  observed that the algorithm

is most stable when the principal cubic root is used. In addition, it
is recommended to select the sign of Q opposite to the sign of m.

As mentioned in Section 3, Eq. (17) has only one positive real
root. In addition, it is shown in Appendix A that Eq. (17) does not



J. Siitonen, T. Sainio / J. Chromatogr. A 1218 (2011) 6379– 6387 6383

Table  1
Ferrari’s algorithm for solving a quartic equation [17].

The subsidiary cubic equation
y3 + ky + m = 0 (I.1)

k = BD

A2
− C2

3A2
− 4E

A
(I.2)

m  = BCD

3A3
− 2C3

27A3
− D2

A2
− B2E

A3
+ 8CE

3A2
(I.3)

A  root of the cubic equation

y  =
3
√

Q − 108m

6
− 2k

3
√

Q − 108m
(I.4)

Q  = 12
√

12k3 + 81m2 (I.5)

The four roots of the original quartic equation (17)

(b1cS
1)1 = − B

4A
+ R

2
+

√
S + T/R

2
(I.6)

(b1cS
1)2 = − B

4A
+ R

2
−

√
S + T/R

2
(I.7)

(b1cS
1)3 = − B

4A
− R

2
+

√
S − T/R

2
(I.8)

(b1cS
1)4 = − B

4A
− R

2
−

√
S − T/R

2
(I.9)

R  =
√

B2

4A2
− 2C

3A
+ y (I.10)

S  = B2
− 4C − y (I.11)
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Fig. 3. Propagation of concentration states in the distance–time diagram for an arbi-

2A2 3A

T = BC

A2
− B3

4A3
− 2D

A
(I.12)

ave any complex root with positive real part. For these reasons,
he right root is always the one having the largest real part. The
ight solution is given by Eq. (I.6), if

e(2R) > Re

(√
S − T

R
−
√

S + T

R

)
(25)

nd otherwise by Eq. (I.8). It was observed in the numerical tests
erformed that the above inequality held true for every set of
arameters when the principal cubic root was used in Eq. (I.4), and
he correct root was always obtained from Eq. (I.6).

. Construction of the distance–time diagram

The solute movement in a chromatography column is conve-
iently presented in a distance–time diagram. In such a diagram,
omposition variables are shown as contour lines in a two-
imensional coordinate system with distance from the column

nlet x as one coordinate and time t as the other. An example of
he distance–time diagram is shown in Fig. 3.

The moment, when the pure first component plateau is eroded
ompletely, is indicated in Fig. 3 by point E. Beyond this point, the
eight of first shock decreases and the velocity of the shock decel-
rates. Graphically this means that the trajectory of the first shock
1 is no longer a straight line but is curved upwards.

It is obvious that, since the retention time of the first shock at
olumn outlet can be expressed explicitly as described in Section 3,
lso the location of the first component shock in the distance–time
iagram can be obtained in closed form. This is observed by consid-
ring that the column length can be varied and the corresponding
ime calculated by Eq. (10). However, because the analytic solution
or tR,1 is relatively complicated, a more convenient method to cre-
te the trajectory of the first shock on the distance–time diagram
n parametric form as a function of cS

1 was derived. The method
s a simpler alternative to the methods by Rhee et al. [8] and by

ajendran and Mazzotti [9].

At the point E, the height of first component shock has not yet
ecreased, and cS

1 is given by cS
1 = cA

1 . As the distance and time
ncrease, cS

1 decreases and approaches zero when x and t approach
trary system. B, feed plateau is eroded; D, components are separated completely;
E,  pure first component plateau is eroded; G, pure second component plateau is
eroded; S1, first shock; S2, second shock.

infinity. The distance x, where a given cS
1 is found in the column,

can be calculated by using the global mass balance of the first com-
ponent

x

L
= Lf,1

(
1 + 1

b1cS
1

)2

+ Lf,2

(
1 + 1

˛(1 + b1cS
1) − 1

)2

(26)

It should be noted that Eq. (26) is equal to Eq. (16) at the column
outlet where x = L.

The corresponding time tR,1 can be solved by applying Eq. (10):

tR,1 =
{

1 − (  ̨ − 1)b2cF
2

[˛(1 + b1cS
1) − 1]

2

}
�tinj + x

L

[
1 + Fa1

(1 + b1cS
1)

2

]
t0

(27)

Eq. (27) gives time tR,1 as a function of cS
1 and x. The latter parameter

can be eliminated by substituting Eq. (26) to Eq. (27) which yields

tR,1 =
{

1 + b1cF
1

(b1cS
1)

2

[
1 + (1 + b1cS

1)
2

Fa1

]

+ b2cF
2

[˛(1 + b1cS
1) − 1]

2

[
1 + ˛2(1 + b1cS

1)
2

Fa2

]}
�tinj (28)

Hence, the trajectory of the first shock S1 can be constructed by
giving cS

1 values from cA
1 to 0 and calculating the corresponding x

and t from Eqs. (26) and (28).

6. Demonstration of the practical relevance of the novel
equations

The novel analytic equations, derived in Section 3, can be used to
calculate differentials of cS

1 and tR,1 with respect to typical operat-
ing parameters that can be varied in practical applications. Next,

such derivatives will be derived and utilized in optimization of
batch chromatography in two  different cases. First, the effect of the
duration of injection on cS

1, tR,1, and the main process performance
parameters is investigated when the feed concentrations cF

1 and cF
2
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re constant. Secondly, the total feed concentration will be varied
hile keeping the injected loadings Lf,1 and Lf,2 constant. The pur-
ose is to demonstrate that the novel analytic equations have also
ractical relevance. It should be noted that the following discussion

s limited to the case where the shock is eroded during elution, i.e.
arrow injections, because the height of the shock, and hence its
ropagation velocity, is constant for sufficiently large injections.

.1. Purification strategy

In this work, it is assumed that one or other of the components
f a binary mixture is purified to a given purity constraint. The first
omponent is the target constituent in the product fraction A, and
he second component in the product fraction B. The purities of the
roduct fractions are given by

A = mA
1

mA
1 + mA

2

=
∫ tcut

tR,1
c1 dt∫ tcut

tR,1
(c1 + c2)dt

(29)

B = mB
2

mB
1 + mB

2

=
∫ tE,2

tcut
c2 dt∫ tE,2

tcut
(c1 + c2)dt

(30)

here tcut is the cut time at which the collection of the first fraction
nds and the collection of second fraction begins.

The most common performance parameters of chromatographic
rocesses are productivity PR,  specific eluent consumption EC,  and
ecovery yield Y. The focus of this work is on the productivity and
he specific eluent consumption. This is because the complete ana-
ytic solution of the elution profiles allows using more a realistic
efinition of the cycle time than in previous studies. However, also
he yield is discussed briefly, because it has an influence on the total
eparation costs. The performance parameters are here defined for
omponent 1 (and analogously for component 2) as follows:

1 = mA
1

mF
1

=
∫ tcut

tR,1
c1 dt

mF
1

(31)

R1 = mA
1

�tcycle
(32)

C1 = Veluent

mA
1

= (�tcycle − �tinj)V̇

mA
1

(33)

here �tcycle is the cycle time and Veluent is the amount of eluent
sed in a chromatographic cycle.

The cycle time is here defined by assuming that no gap exists
etween consecutive chromatographic cycles. This means that the
rst component of the (n + 1)th injection begins to elute just after
he second component of the nth injection has left the column:

tcycle = tE,2 − tR,1 (34)

he definition is different from the one used in many earlier opti-
ization studies, where the effect of tR,1 on the cycle time has not

een taken account. For example, Golshan-Shirazi and Guiochon
10,11] have calculated the cycle time as the corrected analytical
etention time of the second component �tcycle = t0

E,2 − t0, where
0
E,2 is the retention time of the second component at infinite dilu-
ion. In practice, the definition used in this work is more relevant,
ecause it gives the minimum cycle time required for consecutive,

socratic injections. As will be shown shortly, the definition of the
ycle time affects significantly the optimization results.
.2. Effect of the duration of injection on cS
1, tR,1 and �tcycle

One of the most typical practical problems with regard to batch
hromatography is to find the duration of injection that leads to
r. A 1218 (2011) 6379– 6387

optimal process performance, i.e. to minimum separation costs.
Next, the effect of �tinj on cS

1, tR,1, �tcycle, and the process perfor-
mance will be analyzed in the case of constant feed concentrations.

The derivative of cS
1 is obtained by differentiating Eq. (16) implic-

itly with respect to �tinj

∂cS
1

∂�tinj

∣∣∣
cF
1

,cF
2

=
{

2b1(1 + b1cS
1)

[
Lf,1

(b1cS
1)

3
+ Lf,2

˛(  ̌ + b1cS
1)

3

]
�tinj

}−1

> 0 (35)

As seen in the above equation, the height of the first shock at column
outlet always increases with increasing �tinj. This is reasonable,
because the larger the injection is, the later the first shock begins
to erode as seen in Eq. (6).  In addition, when �tinj increases, the
height of the first shock must increase at every point of the column
beyond the beginning of the shock erosion xE (see Fig. 3). This is
because Eq. (35) is valid for every column length L > xE.

The corresponding derivative of the retention time tR,1 is
obtained by differentiating Eq. (10) with respect to �tinj, setting
c1 = cS

1, and by substituting Eq. (35) to the resulting equation

∂tR,1

∂�tinj

∣∣∣
cF
1

,cF
2

= 1 − t0Fa1

�tinj

{
(1/(1 + b1cS

1)
3
) − (ˇLf,2/(  ̌ + b1cS

1)
3
)[

(Lf,1/(b1cS
1)

3
) + (Lf,2/˛(  ̌ + b1cS

1)
3
)
]

(1 + b1cS
1)

+ ˇLf,2

(  ̌ + b1cS
1)

2

}
(36)

On the basis of the right hand side of Eq. (36), it is not possible to
say anything about the sign of the above derivative. However, the
sign can be deduced by examining the shock height. As mentioned
earlier, the shock height is independent of the duration of injection
before the beginning of the shock erosion, xE, and is the higher the
larger the injection is beyond xE. In addition, it is well known that
the shock propagates the faster the higher it is. For these reasons,
the first shock must reach the column outlet the earlier the larger
the injection is, and the above derivative must therefore always be
negative.

The derivative of the cycle time is obtained by differentiating
Eq. (34). It is well known that the derivative of tE,2 with respect to
�tinj is always unity [12]. For this reason, the derivative of the cycle
time must always be greater than unity

∂tcycle

∂�tinj

∣∣∣∣
cF

1
,cF

2

= 1 − ∂tR,1

∂�tinj
> 1 (37)

6.3. Effect of the duration of injection on the process performance

The optimum values of the operating parameters depend much
on whether one is interested in purifying the first or the second
eluted component [10]. When the second component is the tar-
get, the mass of the product fraction mB

2 is independent of �tinj,
provided that the injection is large enough for matching the purity
requirement without collecting the pure first component to the
product fraction B [10]. This means that the productivity always
decreases when the duration of injection increases due to increas-
ing cycle time:

∂PR2

∂�tinj
= − mB

2

(�tcycle)2

∂�tcycle

∂�tinj
< 0 (38)

The specific eluent consumption increases, when �tinj increases.
This is observed by differentiating Eq. (33), where the subscripts

have been changed for component 2, which yields

∂EC2

∂�tinj
= V̇

mB
2

(
∂�tcycle

∂�tinj
− 1

)
> 0 (39)
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ig. 4. Effect of the definition of the cycle time on the productivity. Solid lines: th
tcycle = t0

E,2 − t0. Conditions: cF
1 = cF

2 = 20 g/L; qm,1 = qm,2 = 100 g/L; b1 = 0.02 L/g; b2

n addition, it has been shown that the yield of the component 2
ecreases when �tinj increases [10]. This means that the optimum
uration of injection is always such that the yield of the second
omponent is 100% and the cut time is equal to the retention time
f the second shock.

For the first component, the amount of the product mA
1 increases

hen �tinj increases [10]. This means that both the numerator and
he denominator of Eq. (32) increase simultaneously. Hence, the
nalysis of the productivity of the first component is not as straight-
orward as for the second component. However, it can be shown
hat the productivity of the first component always goes through a

aximum when �tinj increases. The maximum is achieved when
he derivative of the productivity with respect to the �tinj is zero.
n implicit expression for the zero point of the derivative is pre-
ented in Appendix B.

Because the derivative of the cycle time is greater than unity (see
q. (37)), Veluent increases with increasing �tinj. The minimum spe-
ific eluent consumption of the first component can be calculated
y using a similar approach than for the maximum productivity. In
ddition, the yield decreases rapidly with �tinj [10]. For these rea-
ons, the economic optimum might not be where the productivity
s highest. Such calculations are beyond the scope of this work,
owever.

The influence of the definition of the cycle time on the produc-
ivity is illustrated in Fig. 4. The solid lines represent the definition
sed in this work, Eq. (34). The dashed lines are calculated by defin-

ng the cycle time as the corrected analytical retention time of
he second component, as suggested by Golshan-Shirazi and Guio-
hon [10,11]. As seen in Fig. 4a, the definition used in this work
ives significantly shorter cycle times than the other alternative
nd therefore higher productivities (Figs. 4b and c).

It is observed in Fig. 4b that the productivity of the second
omponent first increases with increasing �tinj regardless the defi-
ition of the cycle time. In this region, the resolution between bands

s so high that a portion of the pure first component fraction has to
e collected in the product fraction B to fulfill the purity constraint.
fter the yield begins to fall below 100%, PR2 levels off, if the cycle

ime is defined as the corrected analytical retention time of the sec-
nd component. In contrast, with the definition of the cycle time
sed in this work, the larger the injection, the longer the cycle time

s. The productivity of the second component thus decreases for
arge injections.
For the first component, both the maximum productivity and
tinj with which it is obtained differ significantly (Fig. 4c). In fact,
hen the cycle time is defined as the corrected analytical retention

ime of the second component, the productivity always increases
le time is defined as �tcycle = tE,2 − tR,1. Dotted lines: the cycle time is defined as
5 L/g; F = 1/3; pA = pB = 0.98.

with �tinj until it levels off as the injection becomes so large that tcut

is located on the feed plateau. This gives a misleading impression
that excessively large injections should be preferred.

6.4. Effect of the total feed concentration on cS
1, tR,1 and �tcycle

In many practical applications, also the total feed concentra-
tion can be easily modified, for example by evaporating some of
the solvent from the feed solution. The total feed concentration
increases while the feed composition cF

1/cF
2 remains constant. In

this case, an important practical problem is, whether a large vol-
ume  of dilute sample or a small volume of concentrated sample,
should be injected into the chromatography process to minimize
the separation costs?

When the injected loading is held constant and the total feed
concentration increased, the duration of injection decreases. The
derivative of cS

1 with respect to �tinj for given loading factors can
be obtained from Eq. (16). The height of the first shock depends on
the loading factors and the adsorption isotherm parameters only. It
is interesting to note that cS

1 is independent of �tinj, and thus also
on the total feed concentration, at constant loading factors:

∂cS
1

∂�tinj

∣∣∣∣
Lf,1,Lf,2

= 0 (40)

The derivative of tR,1 with respect to �tinj is obtained by differen-
tiating Eq. (10), where t = tR,1 and c1 = cS

1

∂tR,1

∂�tinj

∣∣∣∣
Lf,1,Lf,2

= 1 (41)

Although cS
1 is independent of the duration of injection, tR,1

increases linearly with it. This is because, in the case of constant
loading factors, a larger injection volume means a lower feed con-
centration, which in turn means that the first shock travels at a
lower velocity before the beginning of the shock erosion xE.

By differentiating Eq. (34) it is observed that the cycle time is
independent of the duration of injection for given loading. This is
because both the derivative of tE,2 and the derivative of tR,1 with
respect to �tinj are unity
∂tcycle

∂�tinj

∣∣∣∣
Lf,1,Lf,2

= 0 (42)
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.5. Effect of the total feed concentration on the process
erformance

When the loading factors are constant and the duration of
njection decreases, the amount of the product increases due to
nhanced displacement effect. This has been proven analytically
or the second component [20] and can be shown analogically for
he first component. Because the cycle time is independent of �tinj,
he productivity of both the first and the second component must
ecrease as the duration of injection increases. At the same time,
he yield of the target component decreases since less product is
btained with same loading. This means that both the maximum
roductivity and the maximum yield are always achieved when
he duration of injection is as small as possible and the total feed
oncentration is as high as possible. In practice, this usually means
hat the process is operated at the solubility limit. The results are
ongruent with the observations that in most cases the concen-
ration overloading is a more economic approach than the volume
verloading [12].

In some cases, the improvement in the productivity and yield
ained by removing solvent from the feed is counter-balanced by
ncrease in the specific eluent consumption. This is because Veluent
ncreases when the feed concentrations increase as seen by dif-
erentiating the numerator of Eq. (33). According to numerical
imulations, the specific eluent consumptions go through mini-
um  or tend towards minimum when the feed concentrations tend

owards infinity. However, although the cycle time is independent
f �tinj, it is not straightforward to derive a closed form equation
or the zero points of derivatives ∂ECi/∂�tinj. This is because the
lope of the � + characteristic corresponding feed state and so the
ear part of the chromatogram changes when the feed concen-
rations change. Implicit expressions are obtained by calculating
ECi/∂�tinj as a function of �tinj.

. Conclusions

For decades, there has been available an exact analytic solution
f the ideal model of chromatography for binary Langmuir systems
hat allows analytic calculation of individual elution profiles, except
or the height and retention time of the first shock in the case of

 narrow injection pulse. In this work, the existing solution was
ompleted by deriving the missing closed-form equations for the
eight and retention time of the first shock. It was thus shown that,

or binary Langmuir systems, the individual concentration profiles
t column outlet can be expressed entirely in closed-form.

The height of the first shock is obtained as a root of a quar-
ic equation, which has only one positive root. Four algorithms
ere compared for solving the quartic. The Ferrari’s algorithm was

bserved to be the most stabile one.
The trajectory of the first shock in distance–time plane was  dis-

ussed briefly. It was shown that the time coordinate of the first
hock in the physical plane can be expressed analytically as a func-
ion of the distance from the column inlet. In addition, a novel,
imple parametric representation, which gives the trajectory of the
rst shock as a function of shock height cS

1, was derived.
The practical relevance of the analytic equations giving cS

1 and
R,1 was demonstrated by using them for optimization of batch
hromatography process. It was shown that cS

1 increases and tR,1
ecreases with increasing duration of injection when the feed con-
entrations are constant. In addition, the derivative of the cycle
ime with respect to �tinj is always more than unity. For this rea-
on, the maximum productivity of component 2 is achieved when

he duration of injection is selected so that the purity constraint can
e fulfilled by having 100% yield. For the first component, produc-
ivity goes through a maximum, for which an implicit expression
as derived.
r. A 1218 (2011) 6379– 6387

When the injected loadings are constant, tR,1 decreases with
increasing feed concentrations. In contrast, cS

1 and �tcycle are inde-
pendent of them. The maximum productivities of the components
are always obtained with maximum feed concentrations, which are
usually limited by viscosity or solubility.

Nomenclature

a Henry constant
A coefficient of the quartic term in Eq. (17)
b Langmuir parameter, L/mol or L/g
B coefficient of the cubic term in Eq. (17)
c mobile phase concentration, mol/L or g/L
cA

1 concentration of the first component at the first compo-
nent plateau, mol/L or g/L

cA′
1 concentration of the first component at the front of the

second component shock, mol/L or g/L
cF

i
concentration of component i in feed, mol/L or g/L

cM
1 concentration of the first component at the rear of the

second component shock, mol/L or g/L
cS

1 concentration of the first component at the top of the first
component shock, mol/L or g/L

C coefficient of the quadratic term in Eq. (17)
D coefficient of the linear term in Eq. (17)
E constant term in Eq. (17)
EC specific eluent consumption, L/mol or L/g
F phase ratio
k coefficient of the linear term in Eq. (I.1)
L column length, m
Lf loading factor
L′

f
auxiliary parameter, (1 + �+b1/b2)Lf,2

m constant term in Eq. (I.1)
pj purity of fraction j with respect to a target component
Q auxiliary parameter defined by Eq. (I.5)
q stationary phase concentration, mol/L or g/L
qm saturation capacity of the adsorbent, mol/L or g/L
PR productivity, mol/s or g/s
R auxiliary parameter defined by Eq. (I.10)
res relative residual
S auxiliary parameter defined by Eq. (I.11)
T auxiliary parameter defined by Eq. (I.12)
u interstitial velocity, m/s
t time, s
t0 elution time of a non-retained component, s
tcut cut time, ending of the collection of the first fraction and

beginning of the collection of the second fraction, s
tE,1 retention time of the end of elution profile of the first

component, s
tE,2 retention time of the end of elution profile of the second

component, s
tR,1 retention time of the front shock of the first component,

s
tR,2 retention time of the front shock of the second compo-

nent, s
V volume, L
V̇ flow rate, L/s
Veluent amount of eluent used in a chromatographic cycle, L
x axial coordinate, m
Y recovery yield
y a root of Eq. (I.1)

Greek symbols

˛ separation factor

 ̌ auxiliary parameter,  ̌ = 1 − 1/˛
� characteristic of a simple wave
� auxiliary parameter, � = (˛b1�+ + b2)/(b1�+ + b2)
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tcycle cycle time, s
tinj duration of a rectangular injection pulse, s

 auxiliary parameter defined by Eq. (B.6)
 auxiliary parameter defined by Eq. (B.4)

 auxiliary parameter defined by Eq. (B.5)
+ slope of � + characteristic corresponding feed state

ubscripts
, 2 components to be separated

ppendix A.

In this appendix, it is shown that Eq. (16), and thus Eq. (17), has
t most one positive real root and does not have any complex root
ith positive real part. For this purpose, Eq. (16) is rewritten as

 = Lf,1

(
1 + 1

b1cS
1

)2

+ Lf,2

(
1 + 1

˛(1 + b1cS
1) − 1

)2

− 1 = 0 (A.1)

nd f is differentiated with respect to cS
1

∂f

∂cS
1

= −2b1(1 + b1cS
1)

[
Lf,1

(b1cS
1)

3
+ Lf,2

˛(1 − 1/  ̨ + b1cS
1)

3

]
< 0 (A.2)

he above derivative is always negative when b1 > 0,  ̨ > 1, Lf,1 > 0,

f,2 > 0, and cS
1 > 0. This means that the left hand side of Eq. (16) is

trictly decreasing when cS
1 > 0, and thus Eq. (16) has at most one

ositive real root.
The fact that Eq. (16) does not have any complex root with pos-

tive real part can be shown by setting cS
1 = Re(cS

1) + Im(cS
1) in Eq.

16). When the terms of the resulting equation are arranged to real
nd imaginary parts, it is seen that the imaginary part is always
nequal to zero when Re(cS

1) is positive. This implies that the above
tatement is true and the right root of Eq. (16) is always the one
aving the largest real part.

ppendix B. Calculation of the maximum productivity of
he first component

In this appendix, it is shown how to calculate the duration of
njection that leads to the maximum productivity of the first com-
onent, providing that �tinj is located on the region where the
rst component plateau is eroded. The discussion is limited to case
here the feed concentrations are fixed.

PR1 tends towards zero, when �tinj tends towards zero or infin-
ty. For this reason, the maximum productivity is always achieved

hen the derivative of the productivity with respect �tinj equals
ero

∂PR1

∂�tinj
= �tcycle(∂mA

1/∂�tinj) − mA
1(∂�tcycle/∂�tinj)

(�tcycle)2
= 0 (B.1)

he above derivative can be calculated explicitly as a function of cS
1.

he cycle time is given by

tcycle = t0Fa1

[
 ̨ − 1

(1 + b1cS
1)

2

]
+ ˇa1cF

2

qm,2(  ̌ + b1cS
1)

2
�tinj (B.2)

nd the mass of the first component in the product fraction A by

A
1 = cF

1�tinj − 

(√

	 + ��tinj

)2
(B.3)
ith

 = (1 − pA)
pA

˛�+ (B.4)

[

[

[

r. A 1218 (2011) 6379– 6387 6387


 = F(� − 1)(a2 − a1)

b1(1 − 	)2
(B.5)

� = ˛b2(1 − 	)(((1 − pA)/pA)cF
1 − cF

2)
F(a2 − a1)(� − 1)

(B.6)

For the duration of injection, the following expression is obtained
from Eq. (16)

�tinj = t0F

(cF
1/qm,1)(1 + (1/b1cS

1))
2 + (cF

2/qm,2)((1 + b1cS
1)/(  ̌ + b1cS

1))
2

(B.7)

The derivate of the cycle time is obtained by differentiating Eq. (B.2)

∂�tcycle

∂�tinj
= (t0Fa1/�tinj)[(t0F/�tinj(1 + b1cS

1)
3
) − (ˇcF

2/qm,2(  ̌ + b1cS
1)

3
)]

(1 + b1cS
1)[(cF

1/qm,1(b1cS
1)

3
) + (cF

2/qm,2˛(  ̌ + b1cS
1)

3
)]

+ ˇa1cF
2

qm,2(  ̌ + b1cS
1)

2
(B.8)

and the derivative of mA
1 by differentiating Eq. (B.3)

∂mA
1

∂�tinj
= cF

1 − 


(
� − �√

	 + ��tinj

)
(B.9)

Eq. (B.1) remains implicit with respect to cS
1 and must be solved

numerically. Once cS
1 is obtained, the corresponding �tinj is calcu-

lated from Eq. (B.7). If Eq. (B.1) has no roots between 0 and cA
1 , the

maximum productivity lies on the region where the first compo-
nent plateau is not eroded.

Appendix C. Supplementary data

A Matlab code that calculates individual concentration profiles
at column outlet analytically, to be used for non-commercial pur-
poses, can be obtained from the publisher’s website. Use command
ideal model binary Langmuir(help); to display instructions.
The code requires Matlab version 7.5 (Matlab R2007b) or newer
to run.

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.chroma.2011.07.004.
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